Smoothing out positively curved metric cones by Ricci expanders
نویسندگان
چکیده
منابع مشابه
Negatively Ricci Curved Manifolds
In this paper we announce the following result: “Every manifold of dimension ≥ 3 admits a complete negatively Ricci curved metric.” Furthermore we describe some sharper results and sketch proofs.
متن کاملAlmost-rigidity and the Extinction Time of Positively Curved Ricci Flows
We prove that Ricci flows with almost maximal extinction time must be nearly round, provided that they have positive isotropic curvature when crossed with R. As an application, we show that positively curved metrics on S and RP 3 with almost maximal width must be nearly round.
متن کاملPositively Curved Combinatorial 3-Manifolds
We present two theorems in the “discrete differential geometry” of positively curved spaces. The first is a combinatorial analog of the Bonnet-Myers theorem: • A combinatorial 3-manifold whose edges have degree at most five has edgediameter at most five. When all edges have unit length, this degree bound is equivalent to an angle-deficit along each edge. It is for this reason we call such space...
متن کاملNon-positively Curved Cube Complexes
Let Γ be a discrete group, defined by a presentation P = 〈ai | rj〉, say, or as the fundamental group of a connected CW-complex X. Remark 1.1. Let XP be the CW-complex with a single 0-cell E , one 1-cell E i for each ai (oriented accordingly), and one 2-cell E 2 j for each rj , with attaching map ∂E j → X (1) P that reads off the word rj in the generators {ai}. Then, by the Seifert–van Kampen Th...
متن کاملA Positively Curved Manifold Homeomorphic
Spaces of positive curvature play a special role in geometry. Although the class of manifolds with positive (sectional) curvature is expected to be relatively small, so far there are only a few known obstructions. Moreover, for closed simply connected manifolds these coincide with the known obstructions to nonnegative curvature which are: (1) the Betti number theorem of Gromov which asserts tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Geometric and Functional Analysis
سال: 2016
ISSN: 1016-443X,1420-8970
DOI: 10.1007/s00039-016-0360-0